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Note 

The Canonical Functions Method and Singular Potentials 

The numerical integration of the radial Schrodinger equation 

d2y/dr2+ (E- U(r)-l(l+ 1)/r’) y(r)=0 (1) 

requires a special attention when the potential U(r) is singular at the origin (I is a 
nonnegative integer; E is the energy). 

Two recent papers by Buendia and Guardiola [l] and Ixaru [2] considered 
potentials of the form 

U(r) = a(r)/r + h(r), (2) 

where u(r) and b(r) are “well-behaved” functions. This function CJ illustrates a class 
of potentials of interest for many problems in physics. The two works [l-2] mainly 
try to determine the energy E when the wave function Y(r) obeys the boundary 
conditions 

Y(O) = 0 (3a) 

y(r) z 0. (3b) 

For this eigenvalue problem, the conventional Cooley shooting method [3] 
using the Numerov integrator [4] 

Y,+,-2Y~+Y.~1=3Y:+,+lOY~+Y:L) (4) 

is not applicable in the usual way, since y,!‘= (Vi -E) y, at a point r, with 
V= U+ Z(1+ 1)/r’) cannot be evaluated in the vicinity of ri = 0. The authors of 
[l-2] start the integration at a large value R of r and integrate Eq. (1) back- 
wards till r =O, where y,= Y(0) must be equated to zero in order to deduce the 
eigenvalue E. 

By using Eq. (4), y is given as 

h2 
y,-2y,+ y2=~(y;+loy;+y;), 

where y;j involves V(0) which is infinite. The authors of [l-2] tried to approximate 
y{ by appropriate functions of the form 

Y;; --f(y,, Y2, Y;? Y;) 
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and to eliminate the undesirable use of V(0). This difficulty is not eliminated when 
one replaces the Numerov integrator by other well-known integrators. 

The aim of this note is to show that the “canonical functions method” [S] is a 
powerful alternative to the treatment outlined above. In this method the computa- 
tion of the wavefunction y(r) (implying an initial value problem) is replaced by that 
of the canonical functions a(r,; r) and fl(ro; r) which are particular solutions of 
Eq. (1) with the initial values 

dr,; ro) = 1, a’(r,; ro) = 0 (5a) 

B(r o;r,)=O, P’(r “; rd= 1, (5b) 

r. being an “arbitrary” origin, 0 < r,, < co. 
The use of tl and /I allows 

(i) the determination of the initial values y(r”) and y’(r,,), by using the 
relation 

4’(r) = y(rd dr,,; r) + y’(rJ B(ro; r) (6) 

and, by imposing the boundary condition (3a), we find 

.v’(rd/Aro) = ?‘_“, -dr,,; r)lB(r,; r); 

or, by imposing the boundary condition (3b), we find 

.f(rd/Aro) = lim --cr(r,; r)lB(ro; r). I-x 

(ii) The determination of the eigenvalue E, since one may consider the 
function 

and the two limits 

q(r) = -dr,; r)lB(r,; r) (7) 

4 + = lim q(r) 
I’-/ 

4 =!‘_“n 4(r) 

@a) 

@b) 

and may impose the continuity condition for y’/y at r,,, 

q+ =q -. (9) 

This equation is fulfilled only when E is an eigenvalue [S]. 
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For the present problem, the main advantage of the canonical functions method, 
outlined above, lies in the fact that the limit q - is reached for r 2 0, and that the 
use of V(0) is simply avoided. This advantage is already shown in a previous work 
[6], where we used the Lennard-Jones function U(r) = const x (l/r” - l/r6). 

To show the validity of the present method, we consider the Coulomb potential 
U(r) = -2/r used in [l-2] having the exact eigenvalues E = - l/(1+ 1)‘. 

The numerical application for this potential is in every aspect similar to that of 
the Morse potential used in [S]. It can be summarized as follows. 

For an arbitrary value of the “parameter” E (E < 0), the canonical functions c( 
and j? ar computed for r > r. : by using a convenient integrator, Eq. (1) is integrated 
starting at r. for a and /I simultaneously with the initial values defined in (5). We 
move on towards large values of r; this integration is stopped when the function 
q(r) = -a/b reaches a constant limit q + (E), within the computer precision, for a 
value of r that we call R. 

This integration, repeated for r d ro, allows the determination of q ~ (E) obtained 
at a value rs of r. 

The eigenvalue problem is then reduced to consider the “eigenvalue function” 
[S] F(E) = q + (E) - q - (E) for E < 0, and to look to the zeros of this function 
when the parameter E varies between 0 and -co. These zeros are nothing but the 
eigenvalues related to the given potential. 

Numerically, this treatment is quite simple. The behavior of CI and p illustrated 
in [S] shows that the two asymptotes of q(r) are reached for V(r) 5 E, where the 
exponential growth of CI and p is not so dominant as to present a numerical 
problem. On the other hand, the function F(E) behaves like tan(aE+b) (a and b 
are constants) [S], and the determination of its zeros is done by conventional 
procedures. 

In Table I we give the eigenvalues EPM computed by the present method (PM) 
for several values of 1 (I = 5, 10, 15, 20, 25). We give for each value of 1 the 
value R of r for which the function q(r) reaches its limit q+ (within the computer 

TABLE I 

Eigenvalues EPM Computed by the Present Method (PM) with the KVS 
Integrator for Several Values of I and Compared to the Exact Values EC for 

the Coulomb Potential 

I EPM E’ To r, R 

5 -0.027777778 -0.02777778 30 1.5 164 
10 -0.0082644628 -0.0082644628 110 14 416 
15 -0.0039062500 -0.00390625 240 48 698 
20 -0.0022675737 -0.0022675737 420 113 1,084 
25 -0.0014792899 -0.0014792899 650 201 1,622 

Nofe. For each I the starting point r0 and the obtained limit points r, 

(-0) and R (- zoo) are given in the last columns. (All values in a.u.) 
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TABLE II 

Variation of the Function q(r) versus r for I= 5 (E= -0.027777778) 

I q(r) r q(r) 

30 
23.112 
17.961 

0.13274413 
0.063573543 

14.076 0.042279341 
11.120 0.03549 1174 
8.852 0.033761658 

7.098 0.033407583 
5.730 0.033345191 
4.656 0.033335144 

3.806 0.033333604 
3.129 0.033333374 
2.587 0.033333339 

2.149 0.033333334 
1.795 0.033333333 
1.516 0.033333333 

30 
36.888 -0.13253878 
45.553 -0.036529527 

56.495 0.0059220642 
70.360 0.027814441 
87.998 0.033027094 

110.825 0.033330502 
130.163 0.033333300 
147.796 0.033333333 

163.863 0.033333333 

Note. The values of q(r) are given for r < r. then for r > r,,,’ The 
theoretical value q’ of qm = lim,,, q(r) and q + = lim,,, q(r) is 
0.033333333. 

’ ru = 30. 

TABLE III 

Eigenvalues EPM Computed by the Present Method (PM) with the 
Numerov Integrator” for Several Values of I and Compared to the 

Exact Values EC of the Coulomb Potential 

I EC dE r0 r, R 

5 -0.027777778 2.5 (-7)h 30 2.8 121 
10 -0.0082644628 1.2 (-7) 110 25 310 
15 -0.0039062500 5.5 (-8) 240 77 565 
20 -0.0022675737 2.0(-8) 420 162 886 
25 -0.0014792899 1.1 (-8) 650 283 1,270 

Note. The discrepancy dE = EPM -EC is given in column 3. For 
each 1, the starting point r. and the obtained limit points Y, (-0) and 
R ( - cz) are given in the last columns. (All values in a.“.) 

a The step size is h = 0.1. 
’ 4.0 (-7) stands for 4.0 x IO-‘. 
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TABLE IV 

Values of q + and q Computed with the Numerov Integrator 
for Several Values of the Step Size h for I= 5 and E= E’ 

h 4 r, R 

0.5 0.0333358 1.4 (-7)” 2.4 129 
0.4 0.0333344 -2.2 (-7) 2.2 127 
0.3 0.0333338 -1.7 (-8) 2.4 126 
0.2 0.03333345 1.6 (-8) 2.4 124 
0.1 0.03333331 1.7 (-8) 2.8 121 

KVS 0.033333333 0.0 (-8) 1.5 164 
Theory 0.033333333 0 

Note. For each h, the mean value 4 = (q i + q -. )/2 is given 
along with the discrepancy dq = 4 -4’; the exact theoretical 
value qc for the Coulomb potential is given in the last line after 
that obtained with the KVS integrator. In the last columns the 
obtained limit points rF ( -0) and R (- E) are given. 

’ 1.4 (-7) stand for 1.4 x 10. ‘. 

precision), and the value r, of Y for which the function q(r) reaches its limit q-. We 
verify that R and rs are functions of I and that rs is different from zero for all I> 0. 
We notice that the present method is free from any prior guess of R or r,. 

For this application, the integrator used is the “Kobeissi variable-step integrator” 
(KVS) [7]. The computer used is a home computer (NewBrain AD giving eight 
significant figures). The “origin” r. of integration is r. = 1(1+ 1 ), which is the 
minimum of the function V(r); we verified, however, that the computed eigenvalue 
EPM is independent from this (convenient) choice of ro. 

In Table II we give some illustrations of the behaviour of the function q(r). These 
examples show how q ~, r,, q + , R are obtained and allow the reader to deduce the 
simplicity of the method and of the program which is available from the authors 
upon request. 

This approach to the present problem may also be used with other integrators 
[S], namely that of Numerov used in [l-2]. We give in Table III some examples 
of eigenvalues computed by the canonical functions method with the Numerov 
integrator. In Table IV we compare the two integrators by computing q + and q ~ 
with the Numerov integrator (for several values of the step-size h) when E is the 
theoretical values E” = - l/(1+ 1)‘. We compare these values to those obtained 
with the KVS integrator and to the theoretical value q’. We deduce from this table 
the higher accuracy of the KVS integrator. 

The case I = 0 requires special attention only when the Numerov integrator is 
used. The rapid variation of q(r) in the vicinity of r - 0 requires the reduction of the 
step-size h in this region in order to detect the limit qp of q(r). This is done 
automatically with the KVS integrator that we recommand for this type of 
problem. 
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